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A linear Hebbian equation for synaptic plasticity is derived from a 
more complex, nonlinear model by considering the initial develop- 
ment of the difference between two equivalent excitatory projections. 
This provides a justification for the use of such a simple equation to 
model activity-dependent neural development and plasticity, and al- 
lows analysis of the biological origins of the terms in the equation. 
Connections to previously published models are discussed. 

Recently, a number of authors (e.g., Linsker 1986; Miller et al. 1986, 
1989) have studied linear equations modeling Hebbian or similar correla- 
tion-based mechanisms of synaptic plasticity, subject to nonlinear satu- 
ration conditions limiting the strengths of individual synapses to some 
bounded range. Such studies have intrinsic interest for understanding 
the dynamics of simple feedforward models. However, the biological 
rules for both neuronal activation and synaptic modification are likely to 
depend nonlinearly on neuronal activities and synaptic strengths in many 
ways. When are such simple equations likely to be useful as models of 
development and plasticity in biological systems? 

One critical nonlinearity for biological modeling is rectification. Bi- 
ologically, a synaptic strength cannot change its sign, because a given 
cell's synapses are either all excitatory or all inhibitory. Saturating or 
similar nonlinearities that bound the range of synaptic strengths may be 
ignored if one is concerned with the early development of a pattern of 
synaptic strengths, and if the initial distribution of synaptic strengths is 
well on the interior of the allowed region in weight space. However, if 
a model's outcome depends on a synaptic variable taking both positive 
and negative values, then the bound on synaptic strengths at zero must 
be considered. 

Previous models make two proposals that avoid this rectification non- 
linearity. One proposal is to study the difference between the strengths 
of two separate, initially equivalent excitatory projections innervating 
a single target structure (Miller et al. 1986, 1989; Miller 1989a). This 
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322 Kenneth D. Miller 

difference in strengths is a synaptic variable that may take both positive 
and negative values. An alternative proposal is to study the sum of the 
strengths of two input projections, one excitatory, one inhibitory, that are 
statistically indistinguishable from one another in their connectivities and 
activities (Linsker 1986). 

The proposal to study the difference between the strengths of two 
equivalent excitatory projections is motivated by study of the visual sys- 
tem of higher mammals. Examples in that system include the projections 
from the lateral geniculate nucleus to the visual cortex of inputs serving 
the left and right eyes (Miller et al. 1989) (reviewed in Miller and Stryker 
1990) or of inputs with on-center and off-center receptive fields (Miller 
1989a). Examples exist in many other systems (briefly reviewed in Miller 
1990). Assuming that the difference between the two projections is ini- 
tially small, the early development of the difference can be described 
by equations linearized about the uniform condition of complete equal- 
ity of the two projections. This can allow linear equations to be used 
to study aspects of early development in the presence of more general 
nonlinearities. 

This paper presents the derivation of previously studied simple, lin- 
ear Hebbian equations, beginning from a nonlinear Hebbian model in the 
presence of two equivalent excitatory input projections. The outcome of 
this derivation is contrasted with that resulting from equivalent excita- 
tory and inhibitory projections. Applications to other models are then 
discussed. 

1 Assumptions 

The derivation depends on the following assumptions: 

A1 There are two modifiable input projections to a single output layer. 
The two input projections are equivalent in the following sense: 

0 There is a topographic mapping that is identicaI for the two 
input layers: Each of the two input projections represent the 
same topographic coordinates, and the two project in an over- 
lapping, continuous manner to the output layer. 

0 The statistics of neuronal activation are identical within each 
projection (N.B. the correlations between the two projections 
may be quite different from those within each projection); 

A2 Synaptic modification occurs via a Hebb rule in which the roles of 
output cell activity and that of input activity are mathematically 
separable; 

The activity of an output cell depends (nonlinearly) only on the 
summed input to the cell. 

A3 
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Derivation of Linear Hebbian Equations 323 

In addition, the following assumptions are made for simplicity. For 
the most part, they can be relaxed in a straightforward manner, at the 
cost of more complicated equations: 

A4 

A5 

A6 

A7 

AS 

The Hebb rule and the output activation rule are taken to be in- 
stantaneous, ignoring time delays. [Instantaneous rules follow from 
more complicated rules in the limit in which input patterns are sus- 
tained for long times compared to dynamic relaxation times. This 
limit appears likely to be applicable to visual cortex, where genic- 
ulate inputs typically fire in bursts sustained over many tens or 
hundreds of milliseconds (Creutzfeldt and Ito 1968)]; 

The statistics of neuronal activation are time invariant; 

There are lateral interconnections in the output layer that are time 
invariant; 

The input and output layers are two-dimensional and spatially ho- 
mogeneous; 

The topographic mapping from input to output layers is linear and 
isotropic. 

2 Notation 

We let Roman letters (z, y, z ,  . . .) label topographic location in the output 
layer, and Greek letters (a ,  /3, y, . . .) label topographic location in each of 
the input layers. We use the labels 1 and 2 to refer to the two input 
projections. 

We define the following functions: 

1. o(z , t ) :  activity ( e g ,  firing rate, or membrane potential) of output 
cell at location z at time t; 

2. Z'(Q, t ) ,  i2(a, t ) :  activity of input of type 1 or 2, respectively, from 
location Q at time t; 

3. A(z-a): synaptic density or "arbor" function, describing connectiv- 
ity from the input layer to the output layer. This tells the number of 
synapses from an input with topographic location a onto the output 
cell with topographic location z. This is assumed time independent 
and independent of projection type; 

4. s ~ ( z , a , t ) , s ~ ( z , a , t ) :  strength of the kth synapse of type 1 or 2, 
respectively, from the input at Q to the output cell at IC at time t .  
There are A ( .  - a)  such synapses of each type; 

5. S'(z, a ,  t ) ,  S2(z, Q, t ) :  total synaptic strength at time t from the input 
of type 1 or 2, respectively, at location a, to the output cell at IC. 
S'(z, Q, t )  = xk sL(z, Q, t )  [and similarly for S2(z, a,  t ) ] ;  
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324 Kenneth D. Miller 

6. B(x  - y): intracortical connectivity function, describing total (time- 
invariant) synaptic strength from the output cell at y to the output 
cell at x. B depends only on z - y by assumption A7 of spatial 
homogeneity. 

3 Derivation of Linear Hebbian Equations from a Nonlinear Hebbian 
Rule 

The Hebbian equation for the development of a single type 1 synapse sk 
from a to x can, by assumptions A2 and A4, be written 

d s k ,  f f ,  t )  = Ah, [o(x,t)] hi [ZI(a,t)] - E - ~ s ~ ( x , c Y , ~ )  
dt 

subject to 0 I s: 5 s,,, (3.1) 

We assume that h, is a differentiable function, but h, and hi are otherwise 
arbitrary functions incorporating nonlinearities in the plasticity rule. A, 
E ,  and y are constants. Summing over all type 1 synapses from LY to x 
yields 

dS'(z, a,  t )  
= AA(x - a)h, [o (x ,  t ) ]  h, [i'(n, t ) ]  dt 

-EA(x - a )  - yS'(rc, a, t )  
subject to 0 2 S'(z, a,  t )  5 smaxA(z - a )  (3.2) 

(and similarly for 5''). There are small differences between equations 3.1 
and 3.2 when some but not all synapses sk have reached saturation. 
We will be concerned with the early development of a pattern, before 
synapses saturate, and so ignore these differences. We will omit explicit 
mention of the saturation limits hereafter. 

Define the direct input to a cell as O(x,t) f Cs{S*(x,P,t)fi[i'(P,t)]+ 
S2(x, 0, t ) f i [ i 2 ( p ,  t ) ] } .  The nonlinear activation rule is, by assumptions A3 
and A4, 

(3.3) 

f, and g are assumed to be differentiable functions, but they and fi are 
otherwise arbitrary functions incorporating the nonlinearities in the acti- 
vation rules. 

We make the following nontrivial assumption: 

A9 For each input vector e(t) ,  equation 3.3 defines a unique output 
vector o( t ) .  

Biologically, this is the assumption that the inputs determine the state 
of the outputs. Mathematically, this can be motivated by studies of the 
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Derivation of Linear Hebbian Equations 325 

Hartline-Ratliff equation (Hadeler and Kuhn 1987).' With this assump- 
tion, o(z, t )  can be regarded as a function of the variables 8(y, t )  for vary- 
ing y. 

We now transform from the variables S' and S2 to sum and difference 
variables. Define the following: 

Note that 8(z, t )  = Bs(z, t )  + BD(z, t ) .  The Hebb rule for the difference, 
S D  = S' - S2 is, from equation 3.2, 

d S D ( z l  t ,  = XA(z - a)ho [o(z, t ) ]  hD(a, t )  - ySD(z, Q, t )  (3.5) dt 
SD is a synaptic variable that can take on both positive and negative 

values, and whose initial values are near zero. We will develop a linear 
equation for S D  by linearizing equation 3.5 about the uniform condition 
S D  = 0. We will accomplish this by expanding equation 3.5 about O D  = 0 
to first order in OD. 

Let os(z, t )  be the solution of 

Then, letting a prime signify the derivative of a function, 

dSD(z,  a,  t )  
= XA(z - a)hy(a ,  t )  {ho [o'(x, t ) ]  dt 

- ysD(z ,  Q, t )  + o [(eD)*] (3.7) 

'The HartlineRatliff equation is equation 3.3 for g(x) = {r, s 1 0; 0, x < 0) and 
f,,(x) = x. That equation has a unique output for every input, for symmetric B, iff 1 - B 
is positive definite; a more general condition for B nonsymmetric can also be derived 
(Hadeler and Kuhn 1987). 
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326 Kenneth D. Miller 

Letting g”(z, t )  = g’ {Bs(z, t )  + Cy B(z  - y)fo[os(y, t ) ]} ,  the derivative 
of o(z, t )  is 

(3.8) 

where 1 is the identity matrix, B is the matrix with elements &, = 

B(z  - y)fA[os(y, t)]g‘s(y, t ) ,  and [. . .Ixy means the xy element of the matrix 
in brackets. Letting 

Z(z, y, t )  = [l + B + (By + . . .] (3.9) 
“Y 

(3.10) 

(3.11) 

we find that equation 3.7 becomes, to first order in O D ,  

This equation can be interpreted intuitively. The first term is the 
Hebbian term of equation 3.5 in which the output cell’s activity has been 
replaced by the activity it would have if OD = 0, that is, if S D  = 0. The 
last term is the Hebbian term with the output cell’s activity replaced by 
the first order change in that activity due to the fact that OD # 0. In 
this term, M ( z ,  t )  measures the degree to which, near OD = 0, the activ- 
ity of the output cell at z can be significantly modified, for purposes of 
the Hebb rule, by changes in the total input it receives. 1(z, y, t )  mea- 
sures the change in the total input to the cell at z due to changes in the 
direct input to the cell at y. @‘(a, p, t )S”(y,  p, t )  incorporates both the 
change in the direct input to the cell at y due to the fact that OD # 0, 
and the difference in the activities of the inputs from a that are being 
modified. 

4 Averaging 

Given some statistical distribution of input patterns i(a,t), equation 3.12 is 
a stochastic differential equation. To transform it to a deterministic equa- 
tion, we average it over input activity patterns. The result is an equation 
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Derivation of Linear Hebbian Equations 327 

for the mean value (S”), averaged over input patterns. The right-hand 
side of the equation consists of an infinite series of terms, correspond- 
ing to the various cumulants of the stochastic operators of equation 3.12 
(Keller 1977; Miller 1989b). However, when X and y are sufficiently small 
that S D  can be considered constant over a period in which all input ac- 
tivity patterns are sampled, only the first term is significant. We restrict 
attention to that term. 

After averaging, the first term on the right side of equation 3.12 yields 
zero, by equality of the two input projections. The lowest order term 
resulting from averaging of the last term is 

XA(z - a )  c ( @ ( X I  t)Z(.l Y, t)C”(a, P, t ) )  SD(Y, P ,  t )  
Y . 0  

where we retain the notation S D  for (S”). We now assume: 

A10 We can approximate (M(z)Z(z ,y )C”(a ,P))  by (M(z)I(z,y)) 

( CD(a ,  8) ) .  

Assumption A10 will be true if the sum of the two eyes‘ inputs is sta- 
tistically independent of the difference between the two eyes‘ inputs. By 
equivalence of the two input projections the sum and difference are inde- 
pendent at the level of two-point interactions: ( S s S D )  = (S’S’)-(S’S’) = 
0 = (Ss ) (SD) .  By assumption A7 of spatial homogeneity, ( M ( z ) J ( z , y ) )  
can depend only on z - y, while ( C”(a, S)) can depend only on a - p. 
With these assumptions, then, the linearized version of this nonlinear 
model becomes 

-ySD(x, a, t )  (4.1) 

where 

and 

Note that the nonlinear functions referring to the output cell, h,, fo, 

and 9, enter into equation 4.1 only in terms of their derivatives. This 
reflects the fact that the base level of output activity, os, makes no 
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328 Kenneth D. Miller 

contribution to the development of the difference S D  because the first 
term of equation 3.12 averages to 0. Only the alterations in output activ- 
ity induced by eD contribute to the development of SD. 

We have not yet achieved a linear equation for development. I(. - y) 
depends on S s  through the derivatives of h,, f o ,  and g. Because the 
equation for Ss remains nonlinear, equation 4.1 is actually part of a cou- 
pled nonlinear system. Intuitively, the sum Ss is primarily responsible 
for the activation of output cells when S D  is small. S s  therefore serves 
to "gate" the transmission of influence across the output layer: the cells 
at z and at y must both be activated within their dynamic range, so that 
small changes in their inputs cause changes in their responses or in their 
contribution to Hebbian plasticity, in order for Z(x - y)  to be nonzero. To 
render the equation linear, we must assume 

A l l  The shape of I(x - y) does not vary significantly during the early, 
linear development of S D .  

Changes in the amplitude of I(" - y) will alter only the speed of de- 
velopment, not its outcome, and can be ignored. Assumption A l l  can 
be loosely motivated by noting that Ss is approximately spatially uni- 
form, so that B(z  - y)  should be the primary source of spatial structure 
in I(" - y)? and that cortical development may act to keep cortical cells 
operating within their dynamic range. 

5 Comparison to the Sum of an Excitatory and an Inhibitory 
Projection 

An alternative proposal to that developed here is to study the sum of the 
strengths of two indistinguishable input projections, one excitatory and 
one inhibitory (Linsker 1986). This case is mathematically distinct from 
the sum of two equivalent excitatory projections, because the Hebb rule 
does not change sign for the inhibitory population relative to the exci- 
tatory population. That is, in response to correlated activity of the pre- 
and postsynaptic cells, inhibitory synapses become weaker, not stronger, 
by a Hebbian rule. 

To understand the significance of this distinction, let S2 now repre- 
sent an inhibitory projection, so that S2 I 0. Then the variable that 
is initially small, and in which we expand in order to linearize, is the 
synaptic sum Ss,  rather than the difference SD.  Define oD analogously 

*The correlation structure of the summed inputs can also contribute to I(. - y), 
since cortical cells with separation x - y must be coactivated for I ( x  - y) to be nonzero. 
Arguments can be made that the relevant lengths in I(.-y) appear smaller than an arbor 
diameter (e.g., see Miller 1990; Miller and Stryker 1990), and thus are on a scale over 
which cortical cells receive coactivated inputs regardless of input correlation structure. 
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Derivation of Linear Hebbian Equations 329 

to the definition of os in equation 3.6, with OD in place of Bs. Let hC(a, t )  z 
hi[Z'(a,t)] + hi[i2((r,t)]. Then one finds in place of equation 3.12 

dSS(x ,  a,  t )  
d t  

= XA(2 - .)h0 [oD(,, t ) ]  @(a,  t )  

-ySs(x, a, t) - 2~A(z  - a) 
+XA(X - a)lMs(z, t )  C Is(,, y, t )  

Yi; l  

CSb,  P, W S ( y ,  P, t )  (5.1) 

where Cs = 112 hff:, and M S  and I s  are defined like M and I except 
that derivatives are taken at OD and oD rather than at 0' and os. 

Unlike equation 3.12, the first term of equation 5.1 does not disappear 
after averaging. This means that the development of S s  depends upon a 
Hebbian coupling between the summed input activities, and the output 
cell's activity in response to SD (the activity the cell would have if S s  = 
0). Thus, direct Hebbian couplings to both S D  and Ss  drive the initial 
development of S s ,  rendering it difficult to describe the dynamics by a 
simple linear equation like equation 4.1. 

In Linsker (1986), two assumptions were made that together lead to 
the disappearance of this first term. First, the output functions h,, fo, and 
g were taken to be linear. This causes the first term to be proportional 
to CD. To present the second assumption, we define correlation func- 
tions C", C'*, C2', C22 among and between the two input projections by 
CJk(a-D) = (h,[zJ(a, t ) ]  f,[z'((P, t ) ] ) .  By equivalence of the two projections, 
C" = C22 and C" = C2'. Then CD = C" - C". The second assumption 
was that correlations between the two projections are identical to those 
within the two projections; that is, CI2 = C". This means that CD = 0, 
and so the first term disappears. This second assumption more generally 
ensures that S D  does not change in time, prior to synaptic saturation. 

Equation 5.1 also differs from equation 3.12 in implicitly containing 
two additional parameters that Linsker named Icl and k2. kl is the decay 
parameter E .  The parameter k2 arises as follows. One can reexpress 
the "correlation functions" CJ in terms of "covariance functions" Q J k  
CJk = QJk + k2, where 

Q"(a - P I  = ((hi [ z 3 ( ~ , 1 ) ]  - ( h  [z ' (a , t ) ] ) )  ( h  [ b k ( P ) t ) ]  

and 

kZ = (h ,  [iJ(a.t)] j (ft [ i " (P . t ) ] )  I 

k2 is independent of the choice of j and k. The Qs have the advantage 
that lim(,-p)+?c Qjk(a - 0) = 0; if fi and h, are linear, the Qs are true 
covariance functions. The correlation function relevant to the sum of an 
inhibitory and an excitatory projection is Cs = C1' +C12 = Qn+Q1' f 2 k z .  

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/2/3/321/812019/neco.1990.2.3.321.pdf by C
olum

bia U
niversity Libraries user on 07 M

arch 2025



330 Kenneth D. Miller 

In contrast, the correlation function relevant to the difference between 
two excitatory projections is CD = C" - C12 = Q'l - & I 2 ,  which has no 
k2 dependence. Thus, the parameters Icl and k2 do not arise in consid- 
ering the difference between two excitatory input projections, because 
they are identical for each input projection and thus disapear from the 
equation for the difference; whereas these parameters do arise in consid- 
ering the sum of an excitatory and an inhibitory projection. In MacKay 
and Miller (1990), it was shown that these parameters can significantly 
alter the dynamics, and play crucial roles in many of the results of 
Linsker (1986). 

In summary, the proposal to study equivalent excitatory and inhibitory 
projections does not robustly yield a linear equation in the presence of 
nonlinearities in the output functions h,, f,, and g. Even in the absence 
of such additional nonlinearities, it can lead to different dynamic out- 
comes than the proposal studied here. It also is biologically problematic. 
It would not apply straightforwardly to such feed forward projections as 
the retinogeniculate and geniculocortical projections in the mammalian 
visual system, which are exclilsively excitatory. Where both inhibitory 
and excitatory populations do exist, the two are not likely to be equiva- 
lent. For example, inhibitory neurons are often interneurons that, when 
active, inhibit nearby excitatory neurons, potentially rendering the three 
correlation structures C", C12, and CZ2 quite distinct; connectivity of such 
interneurons is also distinct from that of nearby excitatory cells (Toyama 
et al. 1981; Singer 1977). Similarly, while there is extensive evidence that 
excitatory synapses onto excitatory cells may be modified in a Hebbian 
manner (Nicoll et al. 1988), current evidence suggests that there may be 
little modification of inhibitory synapses, or of excitatory synapses onto 
the aspinous inhibitory interneurons, under the same stimulus paradigms 
(Abraham et al. 1987; Grfith et al. 1986; Singer 1977). 

6 Connections to Previous Models 

Equation 4.1 is that studied in Miller et al. (1986,1989) and Miller (1989a). 
It is also formally equivalent to that studied in Linsker (1986) except for 
the absence of the two parameters kl and k2.3 

The current approach allows the analysis of other previous models. 
For example, in the model of Willshaw and von der Malsburg (19761, g 
was taken to be a linear threshold function [g(z) = 2 - 6 for z > 6, where 
6 is a constant threshold; g(z) = 0 otherwise]; this can be approximated 
by a differentiable function. The functions h, and f, were taken to be 
the identity, while h, and fi were taken to be step functions: 1 if the 

3Also, lateral interactions in the output layer were not introduced until the final layer 
in Linsker (1986). They were then introduced perturbatively, so that I was approximated 
by 1 + 8. B was referred to as f in that paper. 
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Derivation of Linear Hebbian Equations 331 

input was active, 0 if it was not. A time-dependent activation rule was 
used, but input activations were always sustained until a steady state 
was reached so that this rule is equivalent to equation 3.3. These rules 
were applied only to a single input projection, but the present analysis 
allows examination of the case of two input projections. From equa- 
tion 4.2, it can be seen that choosing g to be a linear threshold function 
has two intuitively obvious effects: (1) on the average, patterns for which 
6’ would fail to bring the output cell at z above threshold do not cause 
any modification of S D  onto that cell; (2)  such patterns also make no 
average contribution to I(y - x) for all 9, that is, if the cell at .E is not 
above threshold it cannot influence plasticity on the cell at y. More gen- 
erally, given an ensemble of input patterns and the initial distribution 
of Ss,  the functions I(. - y) and CD(a  - p )  could be calculated explic- 
itly from equation 4.2 and 4.3, respectively. Similarly, Hopfield (1984) 
proposed a neuronal activation rule in which fi and fo are taken to be 
sigmoidal functions and g is the identity, while many current models 
(i.e., Rumelhart et al. 1986) take f L  and fo to be the identity, but take g 
to be sigmoidal. Again, such activation rules can be analyzed within the 
current framework. 

7 Conclusions 

It is intuitively appealing to think that activity-dependent neural devel- 
opment may be described in terms of functions A, I ,  and C that de- 
scribe, respectively, connectivity from input to output layer (”arbors”), 
intralaminar connectivity within the output layer, and correlations in ac- 
tivity within the input layer. I have shown that formulation of linear 
equations in terms of such functions can be sensible for modeling as- 
pects of early neural development in the presence of nonlinearities in the 
rules governing cortical activation and Hebbian plasticity. The functions 
I and C can be expressed in terms of the ensemble of input activities 
and the functions describing cortical activation and plasticity. This gives 
a more general relevance to results obtained elsewhere characterizing the 
outcome of development under equation 4.1 in terms of these functions 
(Miller et al. 1989; Miller 1989a; MacKay and Miller 1990). 

The current formulation is of course extremely simplified. Notable 
simplifications include the lack of plasticity in intralaminar connections 
in the output layer, the instantaneous nature of the equations, the as- 
sumption of spatial homogeneity, and, more generally, the lack of any at- 
tempt at biophysical realism. The derivation requires several additional 
assumptions whose validities are difficult to evaluate. The current ef- 
fort provides a unified framework for analyzing a large class of previous 
models. It is encouraging that the resulting linear model is sufficient to 
explain many features of cortical development (Miller et al. 1989; Miller 
1989a); it will be of interest, as more complex models are formulated, 
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332 Kenneth D. Miller 

to see the degree to which they force changes in the basic framework 
analyzed here. 
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